

Technical Information Load Sensing Proportional Valves GBV60 / GBV100 / GBV200

www.ryanhydraulic.com

Keep the concept seeking excellence, RYAN try our best to create more value for you with products and service.

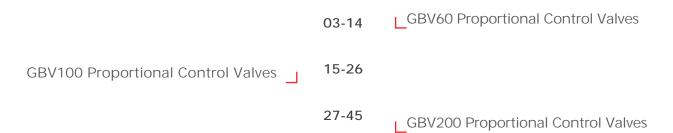
RYAN Hydraulics

About RYAN

RYAN's manufacture was established in 1986, focusing on providing customers with quality hydraulic components and solutions to hydraulic system in the applications of engineering machinery, mobile industries, agricultural machinery, aviation, mining, and other fields. Main products include gear pump, gear motor, flow divider, orbital motor, load sensing proportional valve, monoblock valve, sectional valve, manifold assembly and hydraulic power unit as well.

Long-term development strategy

Reducing emissions by new energy is one of RYAN's long-term strategies. RYAN will be providing innovative technologies, products, and services for the global development of new energy, moving towards a century development strategy, and writing a century-new chapter in the hydraulic field.


Innovation leads the future

Through a few decades of development, Ryan has built an intelligent manufactur-ing factory, gathering international R&D talents, accumulating rich R&D and man-ufacturing experience, possessing independent intellectual property rights, continuously providing customers with new products and technologies, and creating value for all of the customers.

Proportional Control Valves

GBV60 Proportional Control Valves

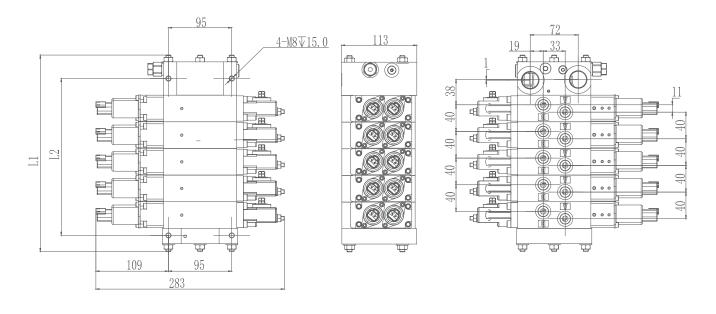
Introduction _	04	
	05	L Dimensions
Standard Spool Flow Characteristics Curves	06	
	07	Technical Specification
Inlet Section Valve Functions and Schematics	08	
	09	Main Valve Functions and Schematics
Drive Types for Main Valve Section _	10	
	11	Main Valve Functions and Schematics
Hydraulic System Examples	12	
	13	Cordering Code
Ordering Example	13-14	

Introduction of GBV60

GBV60 Proportional value is a load sensitive and pre-pressure compensated proportional value. Because of the pressure compensation, working flow is independent of load. All the proportional values in this series have been load sensing. We can choose different cartridge unit for the main value body to accomplish different function. This series value is building with modular design concept, system designer can choose different module to accomplish various complicated system design. Value spool can provide excellent flow characteristics and low flow force.

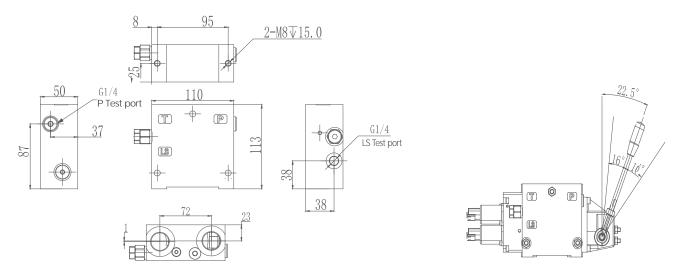
Functions

- Inlet section matches with fixed displacement pump
- Inlet section matches with variable displacement pump
- Multiple control operations
- Overload protections
- Manual proportional valve can provide mechanical and friction detent
- Floating function

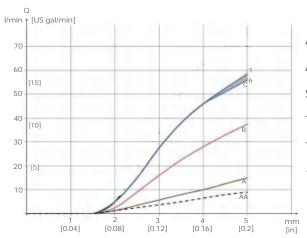

Valve Options

- Manually controlled proportional valve or manually controlled flow sharing proportional valve
- Hydraulic pilot controlled proportional valve or hydraulic pilot controlled flow sharing proportional valve
- Electrically controlled proportional valve or electrically controlled flow sharing proportional valve
- Electro-hydraulic proportional valve or electro-hydraulic flow sharing proportional valve

Max flow of this series is 55L/min. Maximun working pressure is 31MPa, intermittent pressure is 35 MPa. Electro-Hydraulic proportional valve can use two direct current coils: 12VDC and 24VDC, relevant current is 0 ~ 1.5 Amp and 0 ~ 0.75 Amp.


Dimensions

Sec	ction	1	2	3	4	5	6	7
L1	mm	135	175	215	255	295	335	375
L2	mm	75.5	115.5	155.5	195.5	235.5	275.5	315.5

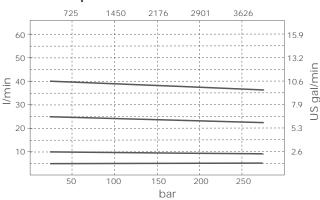

Inlet section drawing

Joystick Appearance

Standard Spool Flow Characteristics

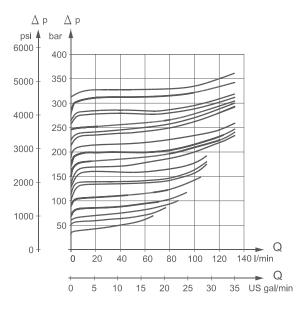
AA, A, B, C indicate spool

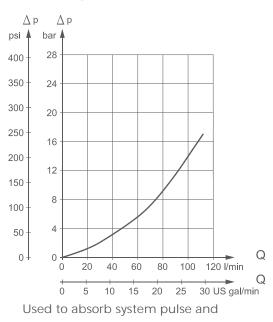
All tests are based on 32 @ 21 mm²/s.


Spool stroke and flow rate with open spool.

The flow rate depends on the supply volume (Q).

This characteristic applies to total supply volume of 100 l/min.


1, 6 represent the spool(C)



Cartridge Valve Characteistics

GBV60 Buffer Valve

GBV60 Charge Valve

therefore cannot be used as a relief valve.

Technical Specification

	P port(Con.)	310 bar	[4495 psi]
	P port(Int.)	350 bar	[5075 psi]
Max. pressure	A/B port(Con.)	310 bar	[4495 psi]
	A/B port(Int.)	350 bar	[5075 psi]
	T port(Static/dynamic)	25/40 bar	[365/580 psi]
	P port	100 l/min	[22 US gal/min]
Rated flow	A/B port	55 l/min	[12 US gal/min]
	Dead band	±1.5 mm	[±0.06 in]
Spool Stroke	Proportional range	±5.0 mm	[±0.2 in]
	Floating position	±7.5 mm	[±0.3 in]
Max. internal leakage	$A/B \rightarrow T$ Unbuffered valve	20 cm³/min	[1.85 in ³ /min]
at 100bar [1450 psi] and 21mm² [102 SUS]	A/B → T Buffer valve system setup 30 bar [435 psi]	25 cm³/min	[2.15 in ³ /min]
	Recommend	30 → 60 °C	[86 → 140 °F]
Oil port	Min.	-30 °C	[-22 °F]
(Temperature)	Max.	90 °C	[194 °F]
Ambient temperature		-30 → 60 °C	[-22 → 140 °F]

Main Spool Functions

Code	Symbol	Functions	Notes
FG1		Standard 3 position-4 way O type middle function Pre-pressure compensation	Usually used in controlling cylinder
FG2		3 position-4 way Y type middle function Pre-pressure compensation	Usually used in controlling motor
FG3		Standard 3 position-4 way O type middle function 4th position floating Pre-pressure compensation	Usually used in controlling cylinder
FG4		3position-4 way Y type middle function 4th position floating Pre-pressure compensation	Usually used in controlling cylinder

Inlet Section Valve Functions and Schematics

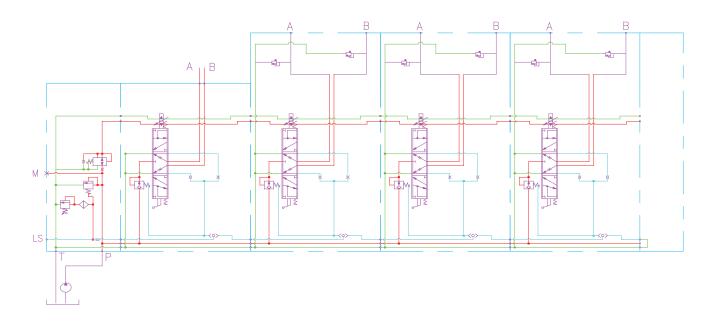
Code	Schematics	Main Functions	Standard Port Sizes
J01		Used in closed circuits with electronically controlled fixed displacement pumps. With pilot oil source.	LS: M14X1.5, G1/4 M: M14X1.5, G1/4 T: M22X1.5, G1/2 P: M22X1.5, G1/2
J02		Used in closed circuits with electronically controlled fixed displacement pumps. Requires external pilot oil source.	Pp: M14X1.5, G1/4 LS: M14X1.5, G1/4 M: M14X1.5, G1/4 T: M22X1.5, G1/2 P: M22X1.5, G1/2
703		Used in closed circuits with electronically controlled variable displacement pumps. With pilot oil source.	LS: M14X1.5, G1/4 M: M14X1.5, G1/4 T: M22X1.5, G1/2 P: M22X1.5, G1/2
J04		Used in closed circuits with electronically controlled variable displacement pumps. Requires external pilot oil source.	Pp: M14X1.5, G1/4 LS: M14X1.5, G1/4 M: M14X1.5, G1/4 T: M22X1.5, G1/2 P: M22X1.5, G1/2

Main Valve Functions and Schematics

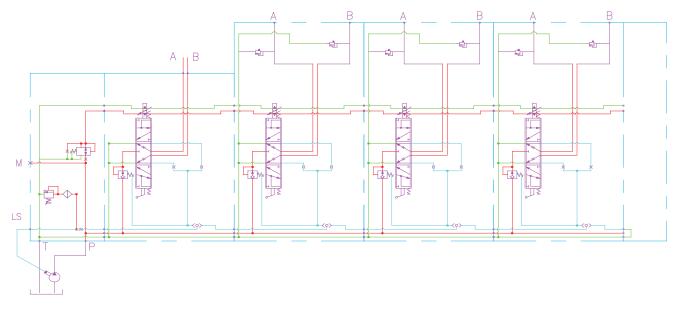
Code	Schematics	Main Functions	Notes
Z01		Pre-pressure compensation (load sensing) Basic valve section	
Z02		Pre-pressure compensation (load sensing) Oil suction valve at working port prevents system from cavitation	Mostly used for motors
Z03		Pre-pressure compensation (load sensing) Relief valve at the working port to prevent system overload Oil suction valve to prevent the system from cavitation	
Z04		Pre-pressure compensation (load sensing) Relief valve on the LS port of work port to avoid system overloading	

Drive Types for Main Valve Section

Code	Symbol	Functions
Q1		Standard manually operated
Q2	W 1 0 2 W	Hydraulic control
Q3		Manually operated with detent
Q4	102FW	Manually operated with floating function
Q5	MI 0 2 M	Electric on/off control
Q6	102W	Standard Electro-hydraulic proportional control
Q7		Standard Electro-hydraulic proportional control with manual override
Q8	M 1 0 2 F W	Standard Electro-hydraulic proportional control with floating function


Main Valve Functions and Schematics

Code	Schematics	Main Functions	Notes
Z05		Pre-pressure compensation (load sensing) Basic valve section	
Z06		Pre-pressure compensation (load sensing) Check valve in working port to prevent air cavitation of system	Mostly used for motors
Z07		Pre-pressure compensation (load sensing) Relief valve in working port to prevent overload and check valve to prevent air cavitation of system	
Z08		Pre-pressure compensation (load sensing) Relief valve on the LS port of work port to avoid system overloading	



Hydraulic System Examples

Electro-hydraulic proportional control circuit with fixed displacement pump (Pre-pressure compensation)

Electro-hydraulic proportional control circuit with variable displacement pump (Pre-pressure compensation)

Ordering Code

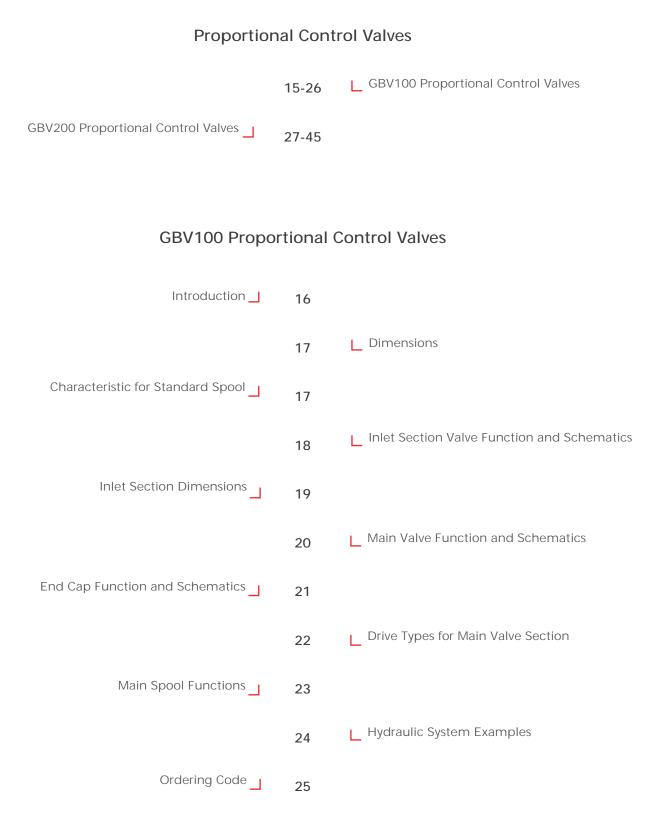
GBV60 /* -J** /*** -D** -O1 -Z	Z** Q* -FG* -DC/** -QL/*** -O2			
a b c d e f g	g h i j K l m			
(a) Model	(h) Drive style code			
Number of main section Spool function code				
© Inlet section code	① Electrical option			
 Main relief valve setting pressure (bar) 	12VDC, 24VDC, 00=None electrical			
e End section code(End cap)	(k) Flow rate			
if no end cap is required use code D00	① Second section			
① First main section	(m)			
Main section code				

**If the standard port is not selected, please provide the order code and the port size.

Ordering Example

GBV60	/3	-J03	/210	-D00	-01	-Z02	-Q6	-FG1	-DC/24	-QL/60
а	b	С	d	е	f	g	h	i	j	k

- (a) Model
- (b) Three main sections
- © Inlet code
- (d) Relief setting 210bar
- (e) No end cap
- ① First section


- $\ensuremath{\textcircled{\textbf{g}}}$ Main section code
- (h) Drive style
- (i) Spool function
- (j) 24VDC
- k Flow 60L/min

-O2 -Z01 -Q6 -FG1 -DC/24 -QL/50 I m n o p q	-O3 -Z01 -Q6 -FG1 -DC/24 -QL/4 r s t u v w				
① Second section	Third section				
(m) Main section code	(s) Main section code				
Drive style code	(t) Drive style code				
 Spool function code 	(u) Spool function code				
P 24VDC	𝔍 24VDC				
(9) Flow 50L/min	® Flow 40L/min				

Ordering example notes: From system example, the selected valve is GBV60 series, we know that the valve has three sections. Inlet relief valve setting pressure is 210 bar. There is no end section. Return from inlet section, the first section has no load relief valve. The section is driven by 24VDC coils. The spool middle function is a O type. The required flow is 60L/min. The second section is also driven by 24VDC coils. There is no overload relief on neither A or B port. The spool middle function is O type, The required flow is 50L/min. The third section is driven by 24VDC coils. No overload relief on neither A or B port. Spool middle function is O type. The required flow is 40L/min.

25-26 Crdering Example

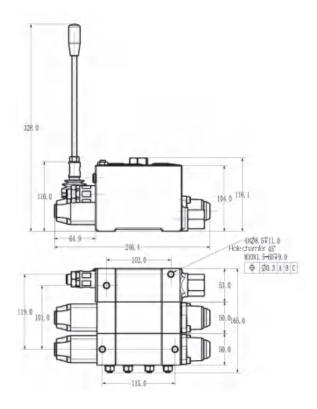
Introduction of GBV100

GBV100 Proportional valve is a load sensitive and post-pressure compensated proportional valve. For post-pressure compensation valve, it can distribute flow proportionally for each working function. Because of the pressure compensation, working flow is independent of load. All the proportional valves in this series have been load sensing and spring return. We can choose different cartridge unit for the main valve body to accomplish different function. This series valve is building with modular design concept, system designer can choose different module to accomplish various complicated system design. Valve spool can provide excellent flow characteristics and low flow force.

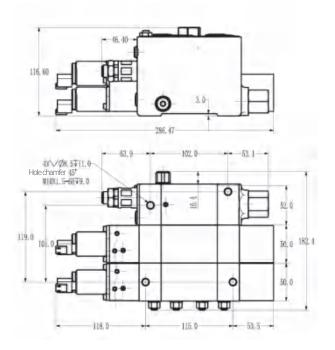
Functions

- Inlet section matches with fixed displacement pump
- Inlet section matches with variable displacement pump
- Multiple control operations
- Overload protections
- Manual proportional valve can provide mechanical and friction detent
- Main valve with float function

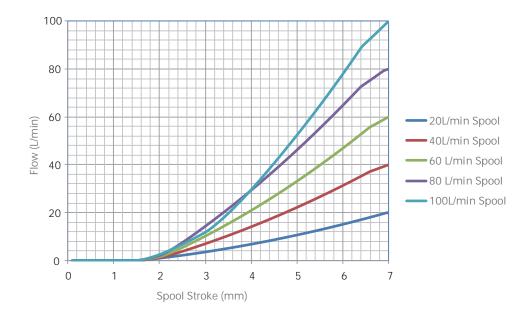
Valve Options


- Manually controlled proportional valve or mechanically controlled flow sharing proportional valve
- Hydraulic pilot controlled proportional valve or hydraulic pilot controlled flow sharing proportional valve
- Electrically controlled on/off valve or electrically controlled flow sharing proportional valve
- Electro-hydraulic proportional valve or electro-hydraulic flow sharing proportional valve

Max flow of this series is 100L/min. Rated pressure is 31MPa. Inermittent pressure is 35 MPa. Electro-Hydraulic proportional valve can use two direct current coils: 12VDC and 24VDC, relevant current is 0 ~ 1.5 Amp and 0 ~ 0.75 Amp.

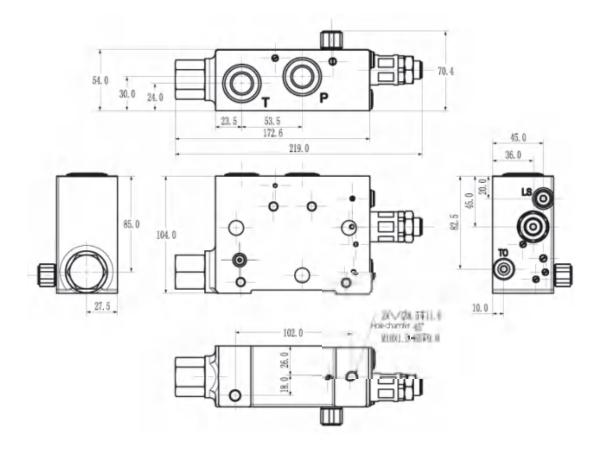


Dimensions


Two Sections Manually Operated Proportional Valve

Two Sections Electro-hydraulic Proportional Valve

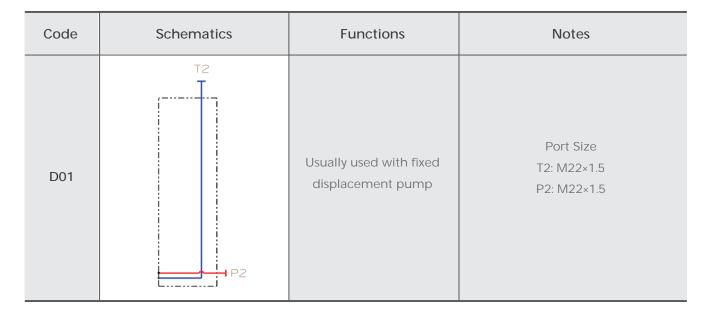
Characteristic for Standard Spool



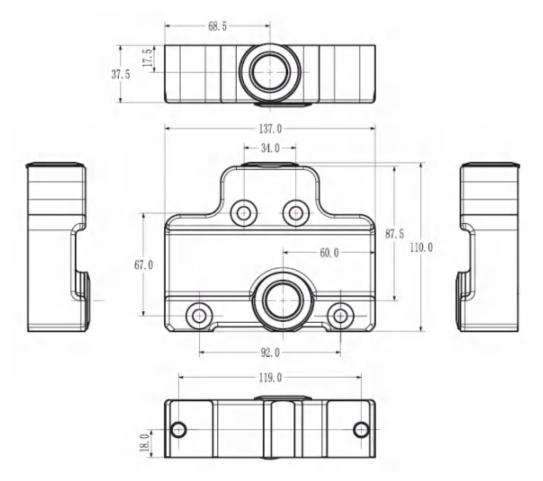
Inlet Section Valve Functions and Schematics

Code	Schematics	Functions	Standard Port Sizes
J01		Used in fixed displacement pump system with pilot oil source	Pg: M14X1.5, G1/4 T0: M14X1.5, G1/4 T: M27X2, G3/4 P: M27X2, G3/4
J02		Used in closed circuits with fixed displacement pumps. Requires external pilot oil source	Pp: M14X1.5, G1/4 Pg: M14X1.5, G1/4 T0: M14X1.5, G1/4 T: M27X2, G3/4 P: M27X2, G3/4
J03		Used in closed circuits for variable displacement pumps with pilot oil source	LS: M14X1.5, G1/4 Pg: M14X1.5, G1/4 T0: M14X1.5, G1/4 T: M27X2, G3/4 P: M27X2, G3/4
J04		Used in closed circuits with variable displacement pumps. Requires external pilot oil source	LS: M14X1.5, G1/4 Pp: M14X1.5, G1/4 Pg: M14X1.5, G1/4 T0: M14X1.5, G1/4 T: M27X2, G3/4 P: M27X2, G3/4

Inlet Section Dimensions



Main Valve Functions and Schematics


Code	Schematics	Functions	Notes
Z01		Post-pressure compensation (proportional flow sharing) Basic valve body	Standard port sizes Working oil ports A and B: M27×2, G3/4
Z02		Post-pressure compensation (proportional flow sharing) Check valve in working port to prevent cavitation of system	Usually used in hydraulic motor
Z03		Post-pressure compensation (proportional flow sharing) Relief valve in working port to prevent overload and check valve to prevent cavitation of system	

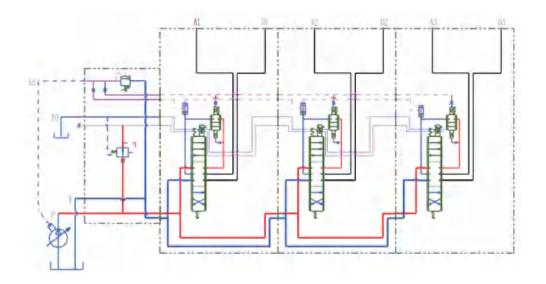
End Cap Functions and Schematics

Dimensions of End Cap

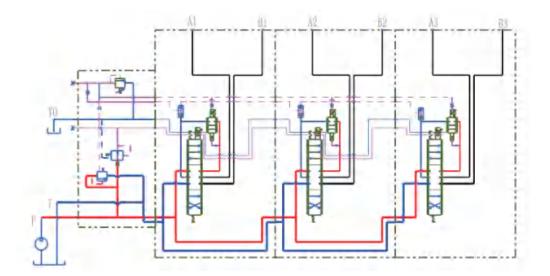
Drive Types for Main Valve Section

Code	Symbol	Functions
Q1		Standard manually operated
Q2	W 1 0 2 W	Hydraulic control
Q3	<u>102</u>	Manually operated with detent
Q4	VIQ2FW	Manually operated with floating function
Q5		Electric control(on/off)
Q6		Standard electro-hydraulic proportional control
Q7		Standard electro-hydraulic proportional control with manual overide
Q8	WIQZFW	Standard electro-hydraulic proportional control with floating function

Main Spool Functions


Code	Spool Type	Functions	Notes
FG1		Standard 3 position-4 way O middle function Post-pressure compensation	Usually used in controlling cylinder
FG2		3 position-4 way Y middle function Post-pressure compensation	Usually used in controlling motor
FG3		3 position-4 way H middle function Post-pressure compensation	Usually used in controlling cylinder
FG4		Standard 4 position-4 way with floating function Post-pressure compensation	Usually used in controlling cylinder

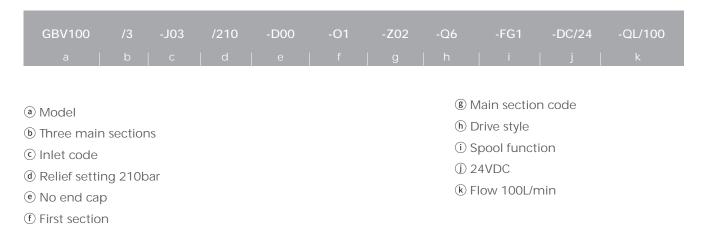
** All spools are spring centered.



Hydraulic System Examples

Electro-hydraulic Proportional Control System with Variable Displacement Pump (Post-pressure Compensation)

Electro-hydraulic Proportional Control System with Fixed Displacement Pump (Post-pressure Compensation)



Ordering Code

GBV100		-J**		-D**	-01	-Z**	Q*	-FG*	-DC/**	-QL/***	-02	
a	b	C	d	е	f	g	h	i	j	k		
<a> Model	ModelDrive style code											
(b) Number of	Number of main section O											
© Inlet secti	Inlet section code (i) Electrical option											
d Relief set	 @ Relief setting (bar) 12VDC, 24VDC, 00=None electrica 							trical				
End section code (End cap) B Flow rate												
(f) First main section (1)						() Sec	① Second section					
Main section code m												

**Port Size: If user do not want our standard size, you have to not only provide ordering code, but also you have to specify all the port sizes.

Ordering Example

-02	-Z01	-Q6	-FG1	-DC/24	-QL/80	-03	-Z01	-Q6	-FG1	-DC/24	-QL/3
	m	n	0	р	q	r	S	t	u	V	W
① Secon	d section					(r) Thin	d section				
 ① Second section ⑦ Main section code 						Main section code					
On Drive style code						(t) Drive style code					
 Spool function code 						Spool function code					
(P) 24VDC					𝔍 24VDC						
(9) Flow 80L/min						Flow 30L/min					

Ordering Example Description: The selected valve is GBV100 series, with three sections, a relief valve in the inlet section with a set pressure of 21 MPa, and no end cap (return from the inlet section). The first section is electro-hydraulic proportional drive, "A" and "B" port are no overload valve, using DC voltage 24 volts. The neutral is "O" type, which requires the first section to provide a flow rate of 100 l/min. The second section is electro-hydraulic proportional drive using 24 volts DC. The "A" and "B" ports have no overload protection valves and the neutral is an "O" type, which is required to provide a flow rate of 80 l/min. The third section is an electro-hydraulic proportional drive, with no overload protection valves on the "A" and "B" ports, with an "O" type neutral position, and requires a flow rate of 30 l/min.

GBV200 Proportional Control Valves

Introduction of GBV200

GBV200 Proportional valve is a load sensitive and post-pressure compensated proportional valve. For post-pressure compensation valve, it can distribute flow proportionally. Because of the pressure compensation, working flow is independent of load. All the proportional valves in this series have been load sensing and spring return. We can choose different cartridge unit for the main valve body to accomplish different function.

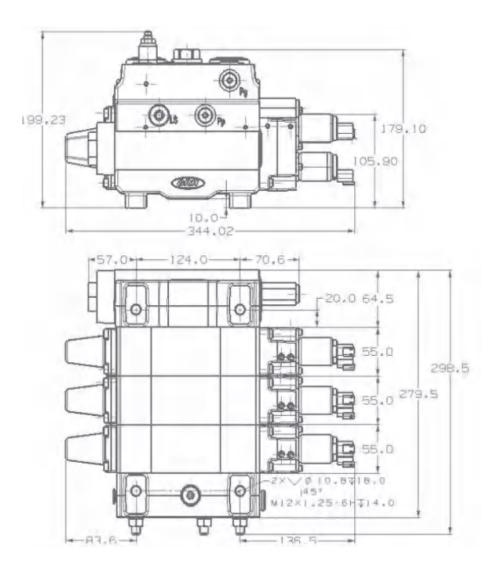
This series valve is building with modular design concept, system designer can choose different module to accomplish various complicated system design. Valve spool can provide excellent flow characteristics and low flow force.

Functions

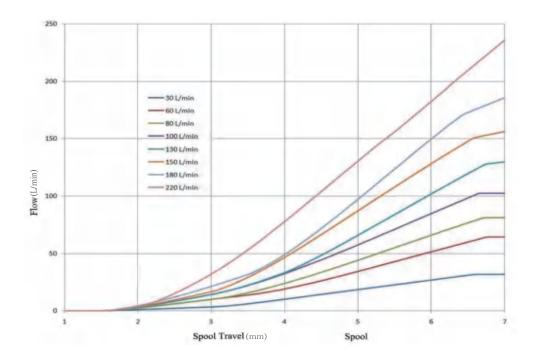
- Inlet section with priority valves
- Inlet section matches with fixed displacement pump
- Inlet section matches with variable displacement pump
- P. O. Check Valve
- One-way throttle valve
- Multiple control operations
- Overload protections
- Manual proportional valve can provide mechanical positioning, friction positioning
- Manual proportional valve can provide floating function
- Overload protections
- Manual proportional valve can provide mechanical and friction function
- Manual proportional valve can provide main valve with float function

Valve Options

- Manually controlled proportional valve or mechanically controlled flow sharing proportional valve
- Hydraulic pilot controlled proportional valve or hydraulic pilot controlled flow sharing proportional valve
- Electrically controlled on/off valve or electrically controlled flow sharing proportional valve
- Electro-hydraulic proportional valve or electro-hydraulic flow sharing proportional valve
- Mixture proportional valve (sections with proportional flow sharing and pre-pressure compensation)


Max flow of this series is 220L/min. Rated pressure is 31MPa. Intermittent pressure is 35 MPa. Electro-Hydraulic proportional valve can use two direct current coils: 12VDC and 24VDC, relevant current is 0 ~ 1.5 Amp and 0 ~ 0.75 Amp.

Dimensions

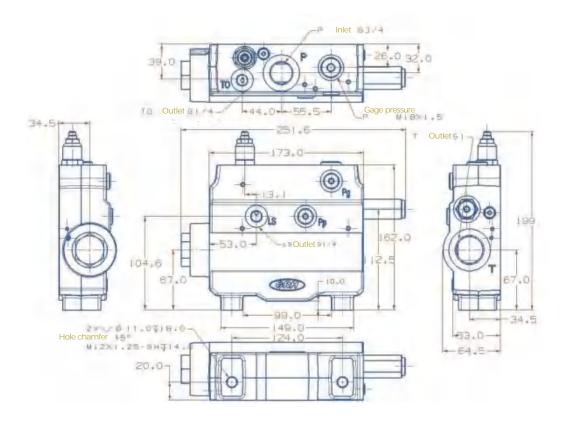

Three Sections Electro-hydraulic Proportional Valve

3 Sections

Flow Characteristic for Standard Spool

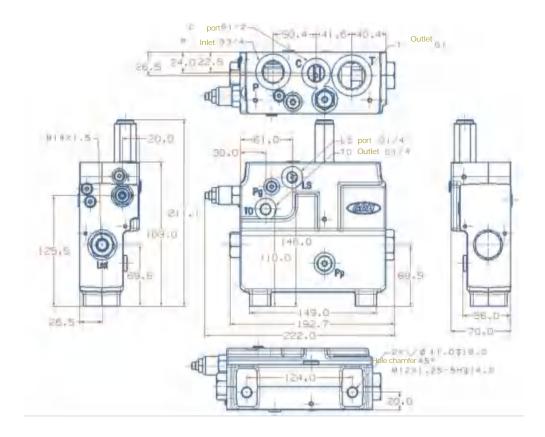
Inlet Section Valve Functions and Schematics

Code	Schematics	Main Functions	Standard Port Sizes
J01		Used in closed circuit fixed displacement pump system, with pilot oil source	LS:M14×1.5, G1/4 T0:M14×1.5, G1/4 T:M27×2, G1 Pp:M14×1.5, G1/4 Pb:M14×1.5, G1/4 P:M27×2, G3/4
J02		Used in closed circuit fixed displacement pump system, manual control, without pilot oil source	LS:M14×1.5, G1/4 T0:M14×1.5, G1/4 T:M27×2, G1 Pb:M14×1.5, G1/4 P:M27×2, G3/4
703		Used in closed circuit variable displacement pump system, with pilot oil source	LS:M14×1.5, G1/4 T0:M14×1.5, G1/4 T:M27×2, G1 Pp:M14×1.5, G1/4 Pb:M14×1.5, G1/4 P:M27×2, G3/4
J04		Used in closed circuit fixed displacement pump system, without pilot oil source	LS:M14×1.5, G1/4 T0:M14×1.5, G1/4 T:M27×2, G1 Pp:M14×1.5, G1/4 Pb:M14×1.5, G1/4 P:M27×2, G3/4


Inlet Section Valve Functions and Schematics

Code	Schematics	Main Functions	Standard Port Sizes
J05		Used in closed circuit variable displacement pump system with low flow, with pilot oil source	LS:M14×1.5, G1/4 T0:M14×1.5, G1/4 T:M27×2, G1 Pb:M14×1.5, G1/4 P:M27×2, G3/4
709		Used in closed circuit variable displacement pump system, with priority valve and pilot oil source	LS:M14×1.5, G1/4 T0:M14×1.5, G1/4 T:M27×2, G1 Pp:M14×1.5, G1/4 Pb:M14×1.5, G1/4 P:M27×2, G3/4 Cf:G1/2 LSst:M14×1.5, G1/4
J07		Used in closed circuit variable displacement pump system, with priority valve, without pilot oil source	LS:M12×1.5 TO:M12×1.5 T:M27×2 Pb:M12×1.5 P:M27×2

Inlet Section Dimensions


Common Inlet Section

Inlet Section Dimensions

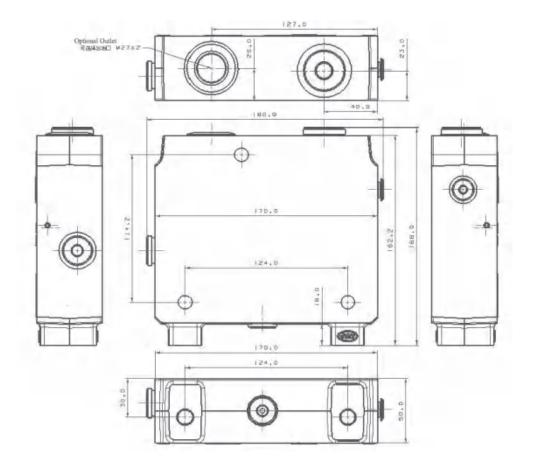
Inlet Section With Priority Valve

Code	Schematics	Main Functions	Notes
Z01		Post-pressure compensation (proportional flow sharing) Basic valve section	
Z02		Post-pressure compensation (proportional flow sharing) Anti-cavitation valve on work ports to prevent cavitations	Commonly used in hydraulic motor applications
Z03		Post-pressure compensation (proportional flow sharing) Provides work ports overload protections and anti-cavitation valve to prevent cavitations	
Z04		Post-pressure compensation (proportional flow sharing) Provides work ports overload protections Provides P.O. checks to hold loads and anti-cavitation valve to prevent cavitations	Most commonly used in cylinder load and holding The P.O. check is used to control load lowering It is also used for swing cylinder and motor

Code	Schematics	Main Functions	Notes
Z05		Post-pressure compensation (proportional flow sharing) Provides work ports overload protections and anti-cavitation valve to prevent cavitations	Most commonly used in cylinder load holding applications The P.O. check is used to control load lowering
Z06		Post-pressure compensation (proportional flow sharing) Provides work ports overload protections and anti-cavitation valve to prevent cavitations Provides P.O. check to hold load on B port	Most commonly used in cylinder load holding applications The P.O. check is used to control load lowering
Z07		Post-pressure compensation (proportional flow sharing) Basic valve section Manually operated	Commonly used in manually controlled proportional valves
Z08		Post-pressure compensation (proportional flow sharing) Provides work ports overload protections and anti-cavitation valve to prevent cavitations Manually operated	

Code	Schematics	Main Functions	Notes
Z09		Pre-pressure compensation (proportional flow) Basic valve section	
Z10		Pre-pressure compensation (proportional flow) Anti-cavitation valve on work ports to prevent cavitations	
Z11		Pre-pressure compensation (proportional flow) Provides work ports overload protections and anti-cavitation valve to prevent cavitations	
Z12		Pre-pressure compensation (proportional flow) Provides work ports overload protections and anti-cavitation valve to prevent cavitations Provides P.O. check to hold load on A port	Most commonly used in cylinder load holding applications The P.O. check is used to control load lowering

Code	Schematics	Main Functions	Notes
Z13		Pre-pressure compensation (proportional flow) Provides work ports overload protections and anti-cavitation valve to prevent cavitation Provides P.O. check to hold load on B port	Commonly used in cylinder load holding applications The P.O. check is used to control load lower- ing
Z14		Pre-pressure compensation (proportional flow) Provides work ports overload protections and anti-cavitation valve to prevent cavitation Provides P.O. checks to hold loads	Most commonly used in cylinder load holding applications. It is also used for swing cylinder and motor applications
Z15		Pre-pressure compensation (proportional flow) Basic valve section Manually operated	Commonly used manually controlled proportional valve.
Z16		Pre-pressure compensation (proportional flow) Provides work ports overload protections and anti-cavitation valve to prevent cavitation Manually operated	Commonly used manually controlled proportional valve with system protections



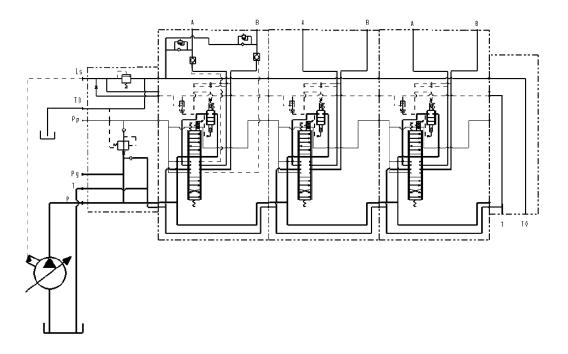
End Cap Functions and Schematics

Code	Schematics	Main Functions	Standard Port Sizes
D01		Usually used in closed circuit with variable displacement pump system	T0:M14×1.5, G1/4 T:M33×2, G1 P:M27×2, G3/4
D02		Usually used in fixed displacement pump system	T0:M14×1.5, G1/4 T:M33×2, G1

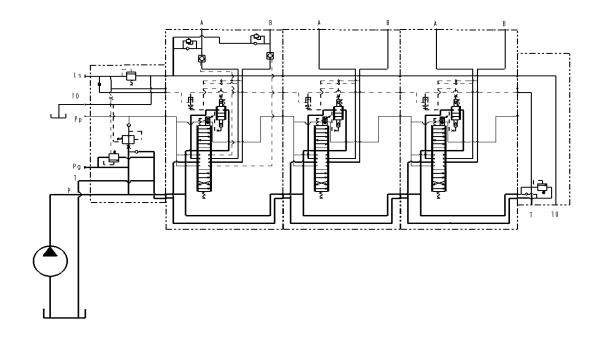
End Cap Dimensions

Drive Types for Main Valve Section

Code	Symbol	Functions
Q1		Standard manually operated
Q2	1 0 2 M	Hydraulic control
Q3		Manually operated with detent
Q4	102F	Manually operated with floating function
Q5	M 1 0 2 M	Electric on/off control
Q6	102W	Standard electro-hydraulic proportional control
Q7		Standard electro-hydraulic proportional control with manual override
Q8	W 102FW	Standard electro-hydraulic proportional control with floating function


Main Spool Functions

Code	Symbol	Functions	Notes
FG1		Standard 3 position-4 way O type middle function Post-pressure compensa- tion	Commonly used in hydraulic cylinder applications
FG2		3 position-4 way Y type middle function Post-pressure compensation	Commonly used in hydraulic motor applications
FG3		Standard 4 position-4 way O type middle function, with fourth position floating Post-pressure compensation	Commonly used in hydraulic cylinder applications
FG4		Standard 3 position-4 way O type middle function Pre-pressure compensation	Commonly used in hydraulic cylinder applications
FG5		3 position-4 way Y type middle function Pre-pressure compensation	Commonly used in hydraulic motor applications
FG6		Standard 4 position-4 way O type middle function with fourth position floating Pre-pressure compensation	Commonly used in hydraulic cylinder applications



Hydraulic System Examples

Electro-hydraulic proportional control circuit with variable displacement pump (Post-pressure compensation)

Electro-hydraulic proportional control circuit with fixed displacement pump (Post-pressure compensation)

Ordering Code

GBV200		-J**		-D**	-01	-Z**	Q*	-FG*	-DC/**	-QL/***	-02	
a	b	С	d	e	f	g	h	i	j	k		m
a Model								(h) Dr	ive style	code		
Number	of mai	n sectio	n					(i) Sp	ool func	tion code		
© Inlet sect	ion co	de						j) El	ectrical o	ption		
d Relief set	ting (b	bar)						12	VDC, 24\	/DC, 00=n	one ele	ctrical
e End secti	on cod	de (End	cap)					(k) Ex	pected f	low rate		
① First mair	n secti	on						() Se	cond sec	ction		
(g) Main sect	tion co	ode						(m)				

**Port Size: If user do not want our standard size, you have to not only provide ordering code, but also you have to specify all the port sizes.

Ordering Example

GBV200	/3	-J03	/210	-D00	-01	-Z02	-Q6	-FG1	-DC/24	-QL/100
а	b	С	d	е	f	g	h	i	j	k

a Model	(B) Main section code
(b) Three main sections	(h) Drive style
© Inlet code	(i) Spool function
(d) Relief setting 210bar	(j) 24VDC
€ No end cap	(k) Flow 100L/min
① First section	

l m n o p q	r s t u v
① Second section	① Third section
Main section code	③ Main section code
Drive style code	(t) Drive style code
Spool function code	Spool function code
24VDC	(v) 24VDC
I Flow 180L/min	Flow 130L/min

Order example notes: From system example, the valve selected is GBV200 series, we know that the valve has three cap. (Return is from inlet section.) Inlet relief valve setting pressure is 210 bar. There is no end section. The first section has no load relief valve. The section is driven by 24VDC coils. The spool middle function is a O type. The required flow is 100L/min. The second section is also driven by 24VDC coils. There is no overload relief on neither A or B port. The spool middle function is O type, The required flow for the 180L/min. The third section is driven by 24VDC coils. No overload relief on neither A or B port. Spool middle function is O type, the required flow is

Shanghai Ryan Hydraulic Fluid Power Co., Ltd

Add. Room 2201-2202, 1717 North Sichuan Road, Hongkou Shanghai, China P.C. 200080 Tel. +86-21-56626882 Mail. sales@ryanhydraulic.com

